数字时钟设计实验报告

2020-10-30 10:37 发布

电 子 课 程 设 计

目:数字时钟

数字时钟设计实验报告

一、设计要求:

设计一个 24 小时制的数字时钟。

要求:计时、显示精度到秒;有校时功能。采用中小规模集成电路设计。

发挥:增加闹钟功能。

二、设计方案:

由秒时钟信号发生器、计时电路和校时电路构成电路。

秒时钟信号发生器可由振荡器和分频器构成。

计时电路中采用两个 60 进制计数器分别完成秒计时和分计时;24 进制计数器完成时计时;采用译码器将计数器的输出译码后送七段数码管显示。

校时电路采用开关控制时、分、秒计数器的时钟信号为校时脉冲以完成校时。

三、电路框图:

图一 数字时钟电路框图

四、电路原理图:

(一)秒脉冲信号发生器 秒脉冲信号发生器是数字电子钟的核心部分,它的精度和稳定度决定了数字钟的质量。由振荡器与分频器组合产生秒脉冲信号。

 振荡器: 通常用 555 定时器与 RC 构成的多谐振荡器,经过调整输出 1000Hz 脉冲。

 分频器: 分频器功能主要有两个,一是产生标准秒脉冲信号,一是提供功能 扩展电路所需要的信号,选用三片 74LS290 进行级联,因为每片为 1/10 分频器,三片级联好获得 1Hz 标准秒脉冲。其电路图如下:

译码器 译码器 译码器 时计数器 (24 进制) 分计数器 (60 进制) 秒计数器 (60 进制) 校 时 电 路 秒信号发生器

图二 秒脉冲信号发生器

(二)秒、分、时计时器电路设计 秒、分计数器为 60 进制计数器,小时计数器为 24 进制计数器。

 60 进制——秒计数器 秒的个位部分为逢十进一,十位部分为逢六进一,从而共同完成 60 进制计数器。当计数到 59 时清零并重新开始计数。秒的个位部分的设计:利用十进制计数器 CD40110 设计 10 进制计数器显示秒的个位 。个位计数器由 0 增加到 9 时产生进位,连在十位部计数器脉冲输入端 CP,从而实现 10 进制计数和进位功能。利用 74LS161 和 74LS11 设计 6 进制计数器显示秒的十位 ,当十位计数器由 0 增加到 5 时利用 74LS11 与门产生一个高电平接到个位、十位的 CD40110 的清零端,同时产生一个脉冲给分的个位。其电路图如下:

图三 60 进制--秒计数电路

 60 进制——分计数电路 分的个位部分为逢十进一,十位部分为逢六进一,从而共同完成 60 进制计数器。当计数到 59 时清零并重新开始计数。秒的个位部分的设计:来自秒计数电路的进位脉冲使分的个位加 1,利用十进制计数器 CD40110 设计 10 进制计数器显示秒的个位 。个位计数器由 0 增加到 9 时产生进位,连在十位部计数器脉冲输入端 CP,从而实现 10 进制计数和进位功能。利用 74LS161 和 74LS11 设计 6 进制计数器显示秒的十位 ,当十位计数器由 0增加到 5 时利用 74LS11 与门产生一个高电平接到个位、十位的 CD40110 的清零端,同时产生一个脉冲给时的个位。其电路图如下:

图四 60 进制--分计数电路

 24 进制——时计数电路 来自分计数电路的进位脉冲使时的个位加,个位计数器由 0 增加到 9 是产生进位,连在十位计数器脉冲输入端 CP,当十位计到 2 且个位计到 3 是经过 74LS11 与门产生一个清零信号,将所有 CD40110 清零。其电路图如下:

图五 24 进制--时计数电路

 译码显示电路 译码电路的功能是将秒、分、时计数器的输出代码进行翻译,变成相应的数字。用以驱动 LED 七段数码管的译码器常用的有 74LS148。74LS148 是 BCD-7 段译码器/驱动器,输出高电平有效,专用于驱动 LED 七段共阴极显示数码管。若将秒、分、时计数器的每位输出分别送到相应七段数码管的输入端,便可以进行不同数字的显示。在译码管输出与数码管之间串联电阻 R 作为限流电阻。其电路图如下:

图六 译码显示电路

校时电路

校时电路是数字钟不可缺少的部分,每当数字钟与实际时间不符时,需要根据标准时间进行校时。一般电子表都具有时、分、秒等校时功能。为了使电路简单,在此设计中只进行分和小时的校时。“快校时”是通过开关控制,使计数器对 1Hz 校时脉冲计数。图中

S1 为校正用的控制开关,校时脉冲采用分频器输出的 1Hz 脉冲,当 S1 为“0”时可以进行“快校时”。

其电路图如下:

图七 校队电路

五、实验方法:

1、秒脉冲产生部分

采用555多谐振荡器产生1HZ频率信号,作为秒脉冲及整体电路的信号输入部分。其仿真电路图如下图所示:

图八 秒脉冲发生器仿真电路

2、计数电路 电子钟计时分为小时、分钟和秒,其中小时为二十四进制,分钟和秒均为六十进制,输出可以用数码管显示,所以要求二十四进制为 00000000~00100100 计数,六十进制为 00000000~01100000 计数,并且均为 8421 码编码形式。

(1)

小时计数——二十四进制电路仿真

用两片 74LS160N(分 A 片、B 片)设计一个一百进制的计数器,在 24(00100100)处直接取出所有为 1 的端口,经过输入与非门 74LS00D,再给两个清零端 CLR。使用 74LS160N 异步清零功能完成二十四进制循环,计数范围为 0~23。然后用七段显示译码器 74LS47D 将 A、B 两片8

9

10

U1074LS01

2

3

U1174LS0112

13

U1074LS00

R3.3 C0.01uS1

GN10

1U8E

74LS01HZ

S2/M2 +5

74LS160N 的输出译码给 LED 数码管。仿真电路如图九所示。

图九 24 进制——时计数器仿真电路 (2)分钟、秒计数——六十进制电路仿真

此电路类似于二十四进制计数器,采用 74LS160N 设计出一百进制的计数器,在 60 (01100000)处直接取出所有为 1 的端口,经过输入与非门 74LS00D,再给两个清零端 CLR。使用 74LS160N异步清零功能完成六十进制循环,计数范围为 0~59。然后用七段显示译码器 74LS47D 将 A、B两片 74LS160N 的输出译码给 LED 数码管。仿真电路如图所示:

图十 60 进制——秒计数器仿真电路

图十一 60 进制——分计数器仿真电路

(四)校时校分(秒)电路。

数字钟应具有分校正和时校正功能,因此,应截断分个位和时个位的直接计数通路,并采用正常计时信号与校正信号可以随时切换的电路接入其中。这里利用两个与非门加一个单刀双掷开关来实现校时功能。第一个 74LS00D 与非门的输入端一端接清零信号,另一端接第二个与非门的输入端,第二个 74LS00D 的输入端一端接计数脉冲,另一端接一个单刀双掷开关。开关接通的一段接地,另一端接高电平。当开关打到另一端时,时或分的个位就单独开始计数,这样就能实现校时功能。其电路图如图所示:

图十二 校分仿真电路

六、实验结果和结论:

数字时钟仿真电路图如下图所示,在 Multisim11.0 中进行仿真,可以实现数字时钟的显示功能、校时功能。显示功能中,小时实现的是 24 进制,分和秒实现的是 60 进制,通过校时电路能够分别校对时和分。

图十三 数字时钟仿真电路

七、设计体会:

在本次 Multisim 仿真过程,从安装软件、选定课题、设计电路、进行仿真、运行结果都自己实际操作完成。在数字时钟设计中,根据老师上课所讲的内容,可以用两片集成十进制同步计数器 74LS160D 级联为 100 进制,再利用其异步清零功能,可以分别实现小时的 24 进制和分秒的 60 进制。当然,在仿真过程中也遇到了很多困难和问题。比如说,无法直接从秒进位到分和分进位到时,并且在仿真中总是出错。于是自己请教了一些也做数字时钟的同学,同时在网上查找了相关资料,最后终于用两个与非门和单刀双掷开关实现了从秒到分的进位、分到时的进位功能及校准功能。

通过本次实验对数电知识有了更深入的了解,将其运用到了实际中来,明白了学习电子技术基础的意义,也达到了其培养的目的。也明白了一个道理:成功就是在不断摸索中前进实现的,遇到问题我们不能灰心、烦躁,甚至放弃,而要静下心来仔细思考,分部检查,找出最终的原因进行改正,这样才会有进步,才会一步步向自己的目标靠近,才会取得自己所要追求的成功。

当然,自己的仿真技术和应用能力还是很欠缺的,虽然完成了基本的设计要求,但是很多自己想要的扩展功能还未能实现。而且很多时候会走过很多弯路,浪费了很多不必要的时间。不过,这次设计经历必将使我受益终身,让我明白如何更好的获取知识,如何更好的理论联系实际。今后的学习更需要不断努力,在获得知识的同时获得快乐,真正的主动探索,主动学习,形成自己的思维方式,不断应用,不断进取。

赞赏支持

登录 后发表评论
3条评论
anny0823
1楼 · 2020-10-30 11:18

太有亮点了。

cailiangyou
2楼 · 2020-10-30 11:13

华大计科学院

数字逻辑课程设计说明书

题目:

多功能数字钟

专业:

计算机科学与技术

班级:

网络工程1班

姓名:

刘群 学号:

1125111023

完成日期:

2013-9

一、设计题目与要求

设计题目:多功能数字钟 设计要求:

1.准确计时,以数字形式显示时、分、秒的时间。 2.小时的计时可以为“12翻1”或“23翻0”的形式。

3.可以进行时、分、秒时间的校正。

二、设计原理及其框图 1.数字钟的构成

数字钟实际上是一个对标准频率1HZ)进行计数的计数电路。由于计数的起始时间不可能与标准时间(如北京时间)一致,故需要在电路上加一个校时电路。图 1 所示为数字钟的一般构成框图。

图1 数字电子时钟方案框图 ⑴多谐振荡器电路

多谐振荡器电路给数字钟提供一个频率1Hz 的信号,可保证数字钟的走时准确及稳定。 ⑵时间计数器电路

时间计数电路由秒个位和秒十位计数器、分个位和分十位计数器及时个位和时十位计数器电路构成。其中秒个位和秒十位计数器、分个位和分十位计数器为60 进制计数器。而根据设计要求,时个位和时十位计数器为24 进制计数器。 ⑶译码驱动电路

译码驱动电路将计数器输出的8421BCD 码转换为数码管需要的逻辑状态,并且为保证数码管正常工作提供足够的工作电流。 ⑷数码管

数码管通常有发光二极管(LED)数码管和液晶(LCD)数码管。本设计提供的为LED数码管。 2.数字钟的工作原理 ⑴多谐振荡器电路

555 定时器与电阻R

1、R2,电容C

1、C2 构成一个多谐振荡器,利用电容的充放电来调节输出V0,产生矩形脉冲波作为时钟信号,因为是数字钟,所以应选择的电阻电容值使频率为1HZ。 ⑵时间计数单元

六片74LS90 芯片构成计数电路,按时间进制从右到左构成从低位向高位的进位电路,并通过译码显示。在六位LED 七段显示起上显示对应的数值。 ⑶校时电源电路

当重新接通电源或走时出现误差时都需要对时间进行校正。通常,校正时间的方法是:首先截断正常的计数通路,然后再进行人工出触发计数或将频率较高的方波信号加到需要校正的计数单元的输入端,校正好后,再转入正常计时状态即可。

根据要求,数字钟应具有分校正和时校正功能。因此,应截断分个位和时个位的直接计数通路,并采用正常计时信号与校正信号可以随时切换的电路接入其中。图8所示即为带有基本RS 触发器的校时电路。

三、元器件

1.实验中所需的器材 单刀双掷开关4 个.5V 电源.共阴七段数码管 6 个.74LS90D 集成块 6 块.74HC00D 6个 LM555CM 1个 电阻 6个 10uF 电容 2个

2.芯片内部结构及引脚图

图2 LM555CM集成块

图3 74LS90D集成块

五、各功能块电路图

1秒脉冲发生器主要由555 定时器和一些电阻电容构成,原理是利用555 定时器的特性,通过电容的充放电使VC 在高、低电平之间转换。其中555 定时器的高、低电平的门阀电压分别是2/3VCC 和1/3VCC电容器充电使VC 的电压大于2/3VCC 则VC 就为高电平,然

而由于反馈作用又会使电容放电。当VC 小于1/3VCC 时,VC 就为低电平。同样由于反馈作用又会使电容充电。通过555 定时器的这一性质我们就可以通过计算使他充放电的周期刚好为1S这样我们就会得到1HZ 的信号。其中555 定时器的一些功能对照后面目录。其中 555 定时器组成的脉冲发生器电路见附图4.

图4 555 定时器组成的脉冲发生器

由于我们要得到1HZ 的信号,所以我们就可以通过555 定时器充放电一次所需的时间的公式。将那时间设为1S然后设定两个电阻计算出另外那个电容值.在设定电阻值时我们要记住将电阻值设为比较常用的那种电阻值,得到的电容值也尽可能让它是比较普遍使用 的。这样就避免了在实际组装过程中很难买到当初设定的那电阻和计算出 的电容值。

在这次设定中我们设定的电阻值RA=10KΩ,RB=62kΩ,C=10uF 经公式

f = 1.43 ÷【 ( RA + 2RB )×C 】 可得近似为1HZ。

2、利用一个LED 数码管一块74LS90D 连接成一个十进制计数器,电路在晶振的作用下数码管从0—9 显示见图5。

图5

3 、利用2 片74LS90D 芯片连接成一个六十进制电路,电路可从0—59 显示。第一片74LS90D芯片构成10 进制计数器,第二片74LS90D 芯片构成6 进制计数器。74LS90D 具有异步清零功能。

在第一片74ls90 构成的十进制计数器中,当第十个脉冲来到时。此时他的四级触发器的状态为“1001”。这时他就会自动清零。同时给第二片74ls90 构成的6 进制计数器进一,第六个脉冲进位到来时,此时第二片74ls90 芯片的触发器的状态为“0110”,这时QB,QC 均为高电平。将QB 与RO1 相连,将Ro2 与Qc 相连,就会进行异步清零。如此循环就会构成60 进制计数器.见附图6.

图6 十六进制电路

4、利用2 片74LS90D 芯片构成24 进制计数器。一片构成二进制计数器,一片构成四进制计数器。由于74LS90D 芯片清零是由两个清零端控制的,所以当第24 个脉冲到来时,第一片74lLS90D芯片的Qc 为高电平。第二片74LS90D 芯片的Qb 为高电平,让第一片74LS90D 芯片的Qc 与两片芯片的Ro1 相连.让第二片74ls90 芯片的QB 与两片芯片的Ro2 相连。当第24 个脉冲到来时就会进行异步清零。如此循环就会构成24 进制计数器。见附图7.

图7 24进制电路

5、数字钟电路由于秒信号的精确性和稳定性不可能坐到完全准确无误,又因为电路中其他的原因数字钟总会产生走时误差的现象。所以,电路中就应该有校准时间功能的电路。在这次设计中教时电路用的是一个RS 基本触发器的单刀双置开关,每搬动开关一次产生一个计数脉冲.实现校时功能 。见附图8。

7、利用两个六十进制和一个二十四进制连接成一个时、分、秒都会进位的电路总图。见附图8

图8 总电路图

六、心得体会

在这次设计中我们深深地体会到了理论跟实践的不同,理论学的再好不会动手那也只能是纸上谈兵。我们了解了集成电路芯片的型号命名规律,懂得了没有某种芯片时的替代方法,以及在网上查找电子电路资料的方法,掌握了各芯片的逻辑功能及使用方法,进一步熟悉了集成电路的引脚安排,掌握了数字钟的设计方法,明白了数字钟的组成原理以及工作原理。掌握了计数器的工作原理,以及计数器进制的组成方法和级联方法,实现了一次理论指导实践、理论向实践过渡的跨越,虽然期间遇到一些困难,但这些困难却增强了我们分析问题、解决问题的能力,使我们以后不仅只学习书本中的理论知识,而且知道学以致用,动过动手实践是我们对书本中的理论知识掌握地跟牢固、理解地跟深刻,这对我们今后的工作及学习有积极的影响。这次课程设计不仅再次复习了数字电子和模拟电子,而且让我对于芯片的使用更加了解。增加了我的动手操作能力,加深了对该软件的了解。这就是这次课程设计的成果,相信这些实际的操作经验会是我们以后的宝贵财富。

湛天碧海
3楼 · 2020-10-30 11:12

好文支持!