鸡兔同笼问题教学随笔

时间:2022-05-15 01:34:52 教育随笔 收藏本文 下载本文

鸡兔同笼问题教学随笔(整理16篇)由网友“梦临云颠”投稿提供,下面是小编为大家整理后的鸡兔同笼问题教学随笔,如果喜欢可以分享给身边的朋友喔!

鸡兔同笼问题教学随笔

篇1:《鸡兔同笼问题》教学反思

《鸡兔同笼》问题教学对于四年级的学生来说有一定的难度,课前我对我班的学生进行了调查。一小部分学生接触过鸡兔同笼问题,但对于多数的学生来说,学习《鸡兔同笼》可能会有一定的难度。所以在这节课当中,我决定主要借助教师引导探究这个手段,让学生弄懂鸡兔同笼问题的基本解题思路。

1、以一个数据比较小的鸡兔同笼问题,来引导学生,经历列表法,探讨假设法等多种解题策略和方法,并用教具和多媒体课件的展示,帮助学生比较直观形象的理解解题方法,从而更好的突出本节课的重点。

2、、由于“鸡兔同笼”问题在老教材小学五年级学稍复杂的方程时出现过,也有小部分学生可能在数奥书上见过,会做。而对于四年级的孩子来说,大部分学生不是很会做,因此在备课时我充分考虑到这个情况,所以在教学本课的重难点用假设法解答“鸡兔同笼”问题的第一部分假设全是鸡时以老师引导对学生进行分析,加以教具演示,帮助学生理解这种方法。然后学习假设全是兔时,以学生根据刚才的学习和理解自己独立完成并说明对每步理解,再用课件展示分析过程。通过这两步的学习,大部分学生应该基本能利用假设法来解答“鸡兔同笼”问题。

3、在这节课上我没有讲古人用的“抬脚法”的方法。这主要是依据学生的接受能力和时间上的考虑,本来这节课讲的方法就很多,特别是假设法学生理解就有困难,再将“抬脚法”讲了,可能学生消化不了,以其都没弄清楚,还不如分成两节课来讲,别外就是时间问题,如果把“抬脚法”讲了,可能学生练习的时间就少了,没办法有效的进行课堂巩固。因此,这节课我没有讲古人用的“抬脚法”。

不足之处:

本节课在时间的安排上不够合理,导致本节课我并没有完成我预设的内容。本节课重在方法的渗透,学生必须经历多种方法解决该类问题的一个过程,而这个过程是绝对不能走过场的,必须实实在在的引导,这样学生必须有足够的时间,不断调整解题策略,逐步探讨出不同的方法,找到合理解决问题的策略,这样一节课的时间就显得不够用了,导致最后没有时间来解决生活中更多类型的实际问题。

篇2:《鸡兔同笼问题》数学教学反思

《鸡兔同笼问题》数学教学反思

数学不仅仅要让学生学会计算、解决实际问题等,还要通过这些知识的学习让学生的思维得到锻炼。鸡兔同笼问题就是这样一种问题,在生活中,鸡兔同笼的现象是很少碰到,没见过有人把鸡和兔放在一个笼子里,即使放在一个笼子里又有谁会去数他们的脚呢?直接数头不就行了?那么是不是说“鸡兔同笼”是一个完全没有价值的数学问题呢?显然不是,鸡兔同笼问题,是让我们通过鸡兔腿数的变化,在这种变化中寻找不变的规律,并采用有效的手段来理解数学问题的过程。以下是我上完课的几点体会:

一、大敢转换情境,提高情境“知名度”。

生动有趣的数学问题情境,能让学生愉快的`探索数学,享受数学带来的乐趣。课堂教学中教师要创设学生喜闻乐见的教学情境,使学生始终处于一种良好的愉悦的氛围中,从而调动学生学习数学的兴趣,发展学生的思维能力。还要注重对学生进行引导,让学生通过观察、操作、讨论、思考发现并掌握知识,时刻把学生推到学习的主体地位,在一个恰当的主题中学习数学,发展能力。基于这一点,本节课的内容安排在“数学与生活”当中,用在生活中经常遇到的一些问题,来引入(幻灯出示:)

1、小明的储蓄罐里有1角和5角的硬币共27枚,价值5。1元,1角和5角的硬币各有多少枚?

2、12张乒乓球台上同时有34人正进行乒乓球比赛,正在进行单打和双打比赛的球台各有几张?

类似于这样的问题,我们的祖先早在1500多年前就已经开始研究了,再课件出示《孙子算经》及鸡兔同笼问题,但同时又聪明地把数改小了:今有鸡兔同笼,上有八头,下有二十二足,问鸡兔各几何?一石激起千层浪,鸡兔怎能同笼?学生的探究欲望马上调动起来,这时,又让学生了解“经典”,感受“经典”。

二、鼓励参与,在合作中提高学习效率。

根据《新课程标准》在课程设置中强调学生是学习的主人,在学习过程中尽可能多的为学生提供探索和交流的空间,鼓励学生自主探索与合作交流。本节课中,我主要通过创设现实情境,让学生投入到解决问题的实践活动中去,自己去研究、探索、经历数学学习的全过程,从而体会到假设的数学思想的应用与解决数学问题的关系。学生能够积极地思考,积极地合作,积极地探讨,充分地发挥了小组的作用,兵教兵,通过学习使学生认识到数形结合的重要性,提高学生分析问题和解决问题的能力。大部分学生学会了,这是很让我感到激动的,因为毕竟鸡兔同笼问题比较难。

篇3:《鸡兔同笼问题》优秀教学反思

本节课我从较简单的问题入手,让学生尝试解决,熟悉此类题型的一般思路,再让学生以填表的方式初步体验鸡兔同笼情况下两种动物的只数和脚的数量之间的关系,同时探索随着鸡兔只数的变化,脚的数量也跟着变化的规律。通过展开小组讨论,引导学生从体验鸡兔同笼中鸡兔的头数和脚的只数关系到用“假设法”和列方程解的方法经历探究过程,此环节是本课的重点,学生从体验、尝试到此处的讨论、汇报,个人或集体的智慧在这里得到展现,方程解、算术解对于大部分学生来说至少有一种方法是他自己理解或掌握的。

但是,可能是由于我课前准备不够充分,或者驾驭课堂的能力有限,在学生汇报的过程中没有做到机敏地倾听和机智地诱导,对于学生的列式没有指明理由,因此感觉学生在全班交流的过程中出现不能理解的情况。我觉得可能是在处理鸡兔只数和脚的数量变化规律的推导过程时,我直接让学生通过表格的形式进行观察,并没有引导学生到比较实际的方向上。如果我能插入具体的鸡和兔的只数变化时的动态图像,学生应该能更加直观的体会到其中的规律,那么对后面的教学展开将易如反掌。由于此处设计的失误,导致后面的方程解的方法时间不够,课堂巩固练习也没能很好的展开。我想这也可能是我在设计教案时并没有准确考虑到学生自身的实际认知水平,本课内容安排过多。如果下次再次教学鸡兔同笼,我想我会把假设法和列方程解的方法分成两个课时,争取让大部分学生都能从多角度思考,运用多种方法来解题。

篇4:鸡兔同笼问题说课稿

鸡兔同笼问题说课稿

一、说教材

《课标》中指出:数学广角重在向学生渗透一些数学思想方法,并初步培养学生有顺序地、全面地思考问题的意识 。

“鸡兔同笼”问题是我国民间广为流传的数学趣题,最早出现在古代数学名著《孙子算经》。教材在本单元安排“鸡兔同笼”问题,一方面可以培养学生的逻辑推理能力;另一方面使学生体会代数方法的一般性。本课的教学与其它解决问题的课的区别在于,要把数学思想方法贯穿始终,为学生的终身发展奠定基础。

编排特点:

1. 注重彰显数学的文化价值,激发学生的学习兴趣。

2. 注重体现解决“鸡兔同笼”问题的不同思路和方法。

教材从数据较小的问题入手,让学生尝试解决。体现了学生从猜测到用“假设法”和列方程的方法解决问题的探究过程,同时也表达了解决“鸡兔同笼”问题的不同思路和方法。同时感受古人巧妙的解题思路。

3. 拓宽对“鸡兔同笼”问题的认识,明确其在生活中的应用。

二、说学生

鸡兔同笼”问题,思维难度大,学生难以理解,特别是对于那些智力水平属于中下的学生来说更是不易。但是有一些学生在课外书中或在奥数班里已经学习了相关的内容。因此,教学这一内容时,学生的程度会参差不齐,而一部分学生对于解方程的基本功比较差,有一定难度。三班的学生思维不够灵活,学习起来会有难度,四班的学生思维活跃,敢想,但很多学生不敢说,有一定的小组合组经验和合作能力,教学效果会好于三班。

三、说教学目标

基于以上认识,我确定本课的`教学目标为:

1、学生初步认识“鸡兔同笼”的数学趣题,感受古代数学问题的趣味性,学习我国传统的数学文化。

2、尝试用不同的方法解决“鸡兔同笼”问题,并能解决与之有关的实际问题。

3、在解决问题的过程中培养学生的逻辑思维能力。

教学重点:尝试用不同的方法解决“鸡兔同笼”问题,并体会各种方法解决此问题的优劣。

教学难点:在解决问题的过程中培养学生的逻辑思维能力。

四、说教法与学法。

我本着“让学生经历猜想、实验、推理等数学探索的过程”的目的,坚持“学生是学习的主人,教师是学生学习的指导者”的原则,采用学生独立思考、小组交流、全班交流的方法,并且给学生留有充足的时间和空间,以学生的学为主导。这也是我们的科研课题“发展性课堂教学手段研究”所要求的留有空白和师生对话所要求的。

五、说教学流程。

第一环节:创设情境,激趣导入

利用课件,从《孙子算经》导入课题。目的是为了给数学课堂带来了浓厚的数学文化气息,让我们的学生感受到我国数学文化的源远流长,激发了学生的学习热情。

第二环节:学生尝试探究

出示例1,从简单的问题入手,引导学生分析问题:从这个题目中你了解到什么信息?

学生独立思考,小组交流,教师巡视指导,给学生留有充足的时间进行思考、交流。

第三环节;师生互动,讨论交流

教师首先要充分预设学生在课堂学习中的种种情况,真正了解学生的认知基础,学生对学习内容的可接受性,学生的思维方式及学习习惯,分析可能产生的差异。根据两次的课堂教学实践,我对学生可能出现的情况做了6种解决问题方法的预设。

课堂中学生的生成是宝贵的资源,教师要关注学生的生成,根据学生的思考来研究问题,真正做到以学生的问题导学,以学生为主。

解答《孙子算经》的原题,让学生在解题过程中感受假设法和列方程的方法带有普遍性,并让学生选择自己喜欢的方法来解决问题。让学生阅读文本,了解古人解决此问题的方法。

第四环节:联系生活,应用练习。目的是让学感受《鸡兔同笼》问题在生活中的应用。

第五环节:总结归纳,畅谈收获

教学中教师要适时地恰当地给予学生评价,课堂教学中关注学生的思考,如在学生能够自己想到一种解决问题的方法时,教师要及时地给予激励性的评价,,以鼓励学生积极思考。

六、说板书设计:板书以假设法和列方程为主,凸显两种解题方法。

通过本次的网络研讨活动,使我对数学广角的教学有了新的更深层次的认识:

1、“数学广角”不等同于“奥数”。

“数学广角”中的内容,大部分都是 “奥数”教材中才出现的内容,比如“鸡兔同笼问题”、“植树问题”、“抽屉原理问题”等等。但是数学广角不等于奥数,它的目的是想通过这些简单的事例渗透一些基本的数学思想方法,“让学生通过接触这些重要的数学思想方法,经历猜想、实验、推理等数学探索的过程,激发学生对数学的好奇心和求知欲,增强学生学习数学的兴趣。”

2、“数学广角”要面对全体学生。

数学广角”中的内容相思维难度要大一些,学生难以理解,特别是对于那些智力水平属于中下的学生来说更是不易。在学习“数学广角”这部分内容时,要跟学习其它内容一样面向全体学生,使绝大多数的学生通过教学都能够理解和掌握一些基本的数学思想方法。

3、在教学中教师要引导学生经历猜想、实验、推理等探索过程,同时在学生遇到困难时给予必要的提醒、点拨,激励学生克服困难,战胜困难,使学生在探究的过程中不断思考,不断感悟,初步掌握“数学广角”内容所蕴含的数学思想和方法

篇5:鸡兔同笼教学反思

《鸡兔同笼》这节课从学的角度安排教学过程、呈现学习内容、提供操作材料,把学习的主动权交给学生,让学生在合作学习的活动中主动完成认知结构的建构过程。因此,使学生的主体意识和探究精神得到培养,创新潜能得到开发,

让学生获得亲自参与探究学习的积极体验。

按照我对教材的理解,并遵照《新课程标准》中:在课程设置中强调学生是学习的主人,在学习过程中尽可能多的为学生提供探索和交流的空间,鼓励学生自主探索与合作交流的精神。首先以观察鸡兔的图片入手,让同学们发现动物身上隐藏着许多的数学问题,然后开门见山的引出本节课要研究的主题“鸡兔同笼”问题;然后以一个数据比较小的鸡兔同笼问题,来引导学生,经历列表法,探讨假设法和方程法等多种解题策略和方法,并加以多媒体课件的展示,帮助学生比较直观形象的理解解题方法,从而更好的突出本节课的重点;接着引出《孙子算经》中的一个数据比较大的鸡兔同笼问题,先让学生用自己刚刚学到的方法进行解决,然后再激发学生“了解古人的解题方法”欲望,让学生自主的去阅读书中的一段阅读资料,了解古人的'解题方法,并试着解释。老师再利用多媒体课件帮助学生理解古人这种独到的解题方法--------抬腿法。从而让学生受到古文化的熏陶,感受道古人的了不起。最后就是利用法学到的方法解决生活中类似的“鸡兔同笼”问题,让学生真正感受到数学与生活密不可分,数学知识来源与生活,同样也运用于生活。

“鸡兔同笼”在以前是属于奥赛典型题,如今编入新课程教材第十一册中。对学生尤其是基础不好的学生来说有一定的难度,因此,我认为必须让学生经历从多种角度思考,运用多种方法解决问题的过程,使学生展开讨论,根据自己已有的经验,不断调整解题策略,逐步探讨出不同的方法,找到合理解决问题的策略;并在合作交流学习的过程中,积累解决问题的经验,掌握解决问题的方法,并灵活运用该方法解决生活中的类似“鸡兔同笼”问题。特别是用假设法解答,学生理解起来很难,为此我用画图的方法来帮助学生理解,先画8个圆圈代表8只鸡,每只鸡画2只脚,这样就有16只脚,缺了10只脚,再把其中的几只鸡每只添上2只脚就变成了兔子,所以有5只兔子。这样把抽象的知识直观化了,学生很快理解了这种方法。

我注重从以下几个方面进行数学文化的渗透:

篇6:鸡兔同笼教学反思

王合义

“鸡兔同笼”问题是我国民间广为流传的数学趣题,大约一千五百年前,我国古代数学名著《孙子算经》中就有记载。同时,这个问题传到日本变成了“龟鹤问题”等等,有许多类似的问题需要我们用这种方法解决。鸡兔同笼这个内容在任何年级都可以教,只是不同的年级采用不同的方法。一、二年级来上这节课,解决的策略应画图和列表法。三、四年级来上,解决的策略应是注重假设法。而五、六年级来上,解决的策略重点应是用列方程的方法。但是教材的设计又把画图法、列表法、假设法、方程法全部提到,明显要求老师在教学中,这几种方法都要提到。

在学生刚接触“鸡兔同笼”问题时,我放手让学生自己去探究。我在巡视的时候发现了采用列表法的几乎没有,不过有用猜想法的人。还有许多用假设法的同学,相信他们都是之前接触过这个问题!和列方程的同学,于是,我用纸记录下各种采用不同方法的学生。然后,按照我的思路有目的的先叫利用猜想的方法进行解答的同学,并将所有猜想列入表中,进行分析。

列表法的优点是方法比较简单。那么,是不是这样的一种方法就可以不用教,或者说可以在教学中一带而过呢。通过对教材的研究和分析,我发觉不尽然。首先,在教学时要强调对脚的总数依次加2的研究和分析,让学生理解把一只鸡变成兔,就相应地会增加2只脚,这样就和后面的假设法对应起来了。其次,在列表时,学生势必要计算出脚的总数,实际上这也就是后面列方程的等量关系,如果在这里能够结合每一次的计算进行分析,学生对方程的方法的理解也就更容易了。所以,教学中我既让学生理解、掌握了这个策略,又未局限于这个策略,而是通过表格规律的发现,为探索新策略奠定了不可缺少的基础;教师既关注了学生解决问题的结果,更关注了学生解决问题的过程与方法,并在不断提升学生解决问题的技能技巧。

让学生认识、理解、运用假设法是本节课的教学重点,也是教学难点。为此,以表格中数据变化规律为探究基础,以小组合作、师生互动为探究方式,以课件动态演示为探究辅助手段,巧妙地将认知经验和思维过程转化成了数学语言,即数学算式,从而形成了解决问题的全新的一般策略,发展了学生的思维水平和推理能力。从学生的学习效果来看,在本节的教学中,学生不容易理解或者说容易出错的就是第三步,实际上也就是对“差”的分析,因此,我和课件结合起来,让学生理解:假设全是鸡,就多出了10只脚,而每增加一只兔子,减少1只鸡,多出的只数就会减少2,10里面有5个2,所以应该有5只兔子,这里一定注意要和学生讲清楚2是什么,要学生不仅仅是看算式,更要看算式前面的文字。结合前面的文字来帮助学生理解算式中的10是什么,2是怎么来的,表示什么意思,这样学生才会对假设法有一个准确的认识。

反思整节课,我感觉基本实现了我预定的教学目标。但是还是存在着很多的不足,例如:

首先,我感觉多媒体课件虽然帮助学生非常直观的理解了“假设法”的这种思维过程,让复杂问题简单化了。但我发现学生的思维过程只是停留在直观、表象这一层面,只有少数同学将这一思考过程内化成成为了自己的一种解决这类知识的模型,大多数同学还是比较喜欢用代数法来解决。

然后,就是在时间的安排上不够合理,导致本节课我并没有完成我预设的内容。在进行教学设计时,我也感觉到本节课的内容着实又点多,虽然问题没几个,但本节课重在方法的渗透,学生必须经历多种方法解决该类问题的.一个过程,而这个过程是绝对不能走过场的,必须实实在在的开展探讨活动,这样学生必须有足够的时间,不断调整解题策略,逐步探讨出不同的方法,找到合理解决问题的策略;这样一节课的时间就显得不够用了,导致最后没有时间来了解古人的解法和解决生活中的实际问题。

对于这个问题我也认真的思考了一下解决的办法,我想把这一节课的最后一部分知识分解到第二课时进行。这样第一节课就着重方法的渗透和建立解决这类问题的数学模型,第二节课再来着重方法的灵活运用。这样一分解,我想就可以适当的减小第一节课的课堂容量,就不会导课堂容量过大而完不成任务了。

篇7:鸡兔同笼教学设计

教学过程:

一、游戏体验

师:这节课我们来做个鸡兔同笼的游戏好吗?

师:谁来介绍鸡和兔的特征?

生1:鸡一个头,两条腿

生2:兔一个头,四条腿

师:现在你们可以自己选择当鸡或当兔,同一排同学算同一个笼子,当鸡的同学站着,当兔的同学坐着,互相说说你们这一笼子小动物有几个头,几条腿?

(学生游戏,体验鸡兔同笼)

二、建立模型

师:谁来说说你们刚才是怎样数出有多少只脚的?

生:用鸡数乘以2,用兔数乘以4。

板书:鸡数2+兔数4

师:通过刚才的游戏你有什么发现?

生:当头数相同,而鸡和兔的只数不同,脚数就会发生变化。

师:如果头数和脚数都不变,鸡兔同笼,数头20个,数脚54只,你能猜出有多少只鸡和兔吗?现在请同学们大胆地猜测,并在小组内说一说。

(小组讨论)

师;可以用什么办法把你们刚才猜测的过程记录下来。

生发言:可以用画图或制成统计表的方法。

师:今天我们主要来学习用统计表的方法解决鸡兔同笼的问题。

师:谁来说说,统计表中每栏要表示什么?

师:现在请同学们独立地把你们猜测的过程记录下来,然后在小组内交流不同的方法。

(小组活动)

师:谁来说说你是怎样记录的?

反馈总结:同学们记录的方法大致可纳成三种情况;逐一列举法、跳跃列举法、取中列举法。谁能说说这三种方法各自的特点?(学生发言)

师:谁来说说三种方法哪种更快捷?

生:我们可以采用取中列表法,再结合跳跃列表法进行调整。

师:如何调整?

生:当发现在尝试过程中所算出的腿数比已知的腿数多,那么腿多的小动物要减少,当尝试过程中所算出的腿数比已知的腿数少,腿多的小动物要增加。

板书:猜测列举调整

三、巩固提升

师:刚才我们通过了猜测列举调整等过程,解决了鸡兔同笼的'问题,你们学会了吗?

1、一只蜘蛛8条腿,一只蜻蜓6条腿,现在共有蜘蛛、蜻蜓12只,共有腿80条。你能猜出蜘蛛、蜻蜓各有多少只吗?

2、王大富买来65只鸡和兔,分别把他们安排在15个笼子里。现鸡兔不同笼,如果每个鸡笼住5只鸡,每个兔笼住4只兔,你知道需要几个鸡笼和兔笼吗?

四、思想教育与总结

师:鸡兔同笼的问题很有意思吧。早在15前我国古代的《孙子算经》里这记载着这样问题,后来传到日本,演变成龟鹤算。古代人真值得我们骄傲,可是今天你们是老师的骄傲,你们想出这么多解决鸡兔同笼的问题的方法,甚至有的同学还会自己设计问题,实在是了不起,希望同学们要把这种善于发现问题的精神发扬下去,将来成为一个了不起的人。

五、教学反思

对于我班多数的学生来说,学习《鸡兔同笼》可能会有一定的难度。本人本想以游戏为开端想去激发学生的学习兴趣,但由于本班学生学习基础差,参与意识不强,因此本人对本堂课不是很满意

我认为我做的比较成功的地方是,在这节课当中我主要借助教材上的列表法,再让学生进行大胆的尝试与猜测,去弄懂鸡兔同笼问题的基本解题思路。师生共同经历了和得出三种不同的列表方法:逐一列表法、、跳跃式列表法、取中列表法。

就本堂课而言,还存在以下问题;

1、在创设完情景引导学生用什么方法解这个问题时,学生的参与意思被动,是我没有预想到的。如果把前一部分改成让学生动手画图,可能效果会更好。情景创设上有漏洞,需进一步完善。

2、我在假设之后怎么验证结果是否正确分析得较细,但对怎么假设觉得没有引导好,过程中出现了学生只假设了鸡的只数,然后根据腿的数量去推算出兔的只数,误解了题意。

3、在总结规律是我如果能让学生自己多动嘴说一说,也许课堂效果会更好。

4、由于时间练习量不多,最后一个练习题应有多种结果,也没有一一罗列。今后教学中要紧凑课堂结构,要少讲,留更多的时间给学生于练习。

篇8: 鸡兔同笼教学设计

教学设计说明

按照我对教材的理解,和学生心理特点学习潜力的把握,对教学设计进行简单说明:

一、我开门见山的引出本节课要研究的主题“鸡兔同笼”问题;然后以一个数据比较小的鸡兔同笼问题,来引导学生,经历列表法,探讨假设法和方程法等多种解题策略和方法,并加以多媒体课件的展示,帮忙学生比较直观形象的理解解题方法,从而更好的突出本节课的重点。

二、由于"鸡兔同笼"问题在人教版中是第一次出现,只有小部分学生可能在数奥书上见过,会做。大部分学生都是第一次遇到,因此在备课时我充分思考到这个状况,所以在教学本课的重难点用假设法解答"鸡兔同笼"问题的第一部分假设全是鸡时以老师引导进学生行分析,加以课件演示,帮忙学生理解这种方法。然后学习假设全是兔时,以学生根据刚才的学习和理解自己独立完成并说明对每步理解,再加以课件演示。透过这两步的学习,大部分学生就应基本能利用假设法来解答"鸡兔同笼"问题。

三、在本课的设计上我灵活的安排了教材,把书上“26只脚”改为了“26条腿”意思差不多,但便于学生在后面分析叙述,好与“几只兔”“几只鸡”区分。不然都是“只”,让学生听不明白。在这节课上我没有讲古人用的“抬脚法”的方法。这主要是依据学生的理解潜力和时间上的思考,本来这节课讲的方法就很多,个性是假设法学生理解就有困难,再将“抬脚法”讲了,可能学生消化不了,以其都没弄清楚,还不如分成两节课来讲,别外就是时间问题,如果把“抬脚法”讲了,可能学生练习的时间就少了,没办法有效的进行课堂巩固。因此,这节课我没有讲古人用的“抬脚法”。

四、我认为本节课的重难点都就应是在用假设法来解决“鸡兔同笼”问题上,在这部分的设计上,我看了很多资料和课例。都说得较为简单,并有不同的说法。在假设全部都是鸡那里,用26-16=10条腿,那里就应说是“多10条腿”还是“少10条腿”呢,教材上只是简单的说“这样就多出了10只脚”,透过我和我们年级组其他教师的讨论,并看了很多教案和课例,我觉得以假设后的腿与实际比学生较容易理解,当说到这个问题时能够直接说“比实际少了10条腿,为什么少呢?是把兔当成鸡算了,”那里是把兔假设成了鸡,肯定就应是少算10条腿。如果说成“多10条腿,为什么多呢?”就不好给学生解释了。这样也便于同前面的把一只兔当成一只鸡算就少2条腿联系起来。

教学目标:

1.了解“鸡兔同笼”问题,感受古代数学问题的趣味性。

2.尝试用不同的方法解决“鸡兔同笼”问题,使学生体会假设和列方程的一般性。

3.在解决问题的过程中,培养学生的思维潜力,并向学生渗透转化、函数等数学思想和方法。

教学重点:

用假设法解决“鸡兔同笼”问题。

教学具准备:

课件。

教学过程

一、历史激趣,导入新课(3分)

导语:老师听说我们班的同学十分喜欢读书,这天老师给同学们带来一部1500年前的数学名著《孙子算经》(课件出示古书动画打开书出现原题),里面记载着许多搞笑的数学名题,其中有这样一道题请看:今有雉兔同笼,上有三十五头,下有九十四足,问雉兔各几何?(师读,课件中标注出题目中的“雉”(读成“zhì”),就是野鸡。)谁明白,这是一个什么问题?(鸡兔同笼问题)这节课我们就来研究中国历史上著名的数学趣题“鸡兔同笼”。(板书课题)

【设计意图】这一引入,给数学课堂带来了浓厚的文化气息,让我们的学生感受到我国数学文化的源远流长,激发了学生的学习热情。

1.分析题意:这道题目是什么意思?(这道题目是说,此刻有一些野鸡和兔子,关在同一只笼子里,从上面看,共有35个头;从下面看,共有94只脚。问有多少只野鸡、多少只兔子?)

2.出示例题:贴出例题及插图:鸡兔同笼,上面看有35个头,下面看有94条腿,鸡兔各有多少只?(请一名同学读题)

你从中发现了哪些数学信息?这道题里还有隐藏的数学信息吗?同学们先来尝试猜测鸡、兔可能各有多少只?(找一两个同学猜测)

过渡:看来这么大的数据,同学们尝试猜测有必须的难度,那我们把它化难为易,从简单入手找出规律,再来尝试猜测解决这个问题。

二、化难为易,寻找规律(15分)

1.如果鸡兔共5只,共有18条腿,尝试猜测一下鸡、兔可能各有多少只?

2.鸡兔共5只不变,腿数变为16条,鸡兔各有多少只?你是怎样猜测出来的?

3.鸡兔共5只不变,鸡、兔的只数还有其他状况吗?腿数是多少?

4.(拿其中一名同学的表格在展示台展示)请同学们观察分析这些数据,看看有什么规律?(满足鸡兔共五只的条件;鸡的只数在逐一增多;兔的只数在逐一减少;腿的条数也在减少;鸡增加一只兔减少一只,腿数减少两条)追问:腿的条数是怎样减少的?谁的只数变化使腿数减少?反过来观察你有什么发现吗

过渡:刚才我们运用列表的方法解决了这道简单的鸡兔同笼问题,并且在表格中发现了规律,那么你们能不能运用列表的方法以及刚才发现的规律来解决《孙子算经》中的鸡兔同笼问题?(板书:列表法)

【设计意图】简单入手、化难为易发现规律,运用知识迁移,拓宽学生思路,留给学生思考的空间,在解决问题的过程中发现表格的用处,及其在表格中发现规律,为构建新知奠定基础。

三、交流强趣构建新知

1.学生独立完成,教师巡视

2.在小组里交流一下你尝试猜测的过程

(选出:逐一列表法;腿数少小幅度跳跃;腿数多大幅度跳跃;跳跃逐一相结合;取中列表)

3.学生汇报:

(1)请一个采用逐一列表法解决的同学汇报(假如有采用逐一列表法的)

汇报讲出理由(你是依据什么确定第一组数据的,计算验证后发现了什么问题,腿数多或少说明什么?怎样进行调整的也就是调整的方法),并且说一说调整过程中有什么发现?(因为鸡和兔的只数是固定的,每增加一只兔子减少一只鸡,腿的总只数就增加2条。)

还有哪些同学与他的方法相同或类似?补充说明理由和发现的规律。你们认为这种方法有什么特点?(板书:逐一)

小结:逐一列表法虽然比较麻烦,但是不重复不遗漏;

(2)请小幅度跳跃列表的同学汇报

说出是如何确定第一组数据的?计算验证后发现了什么问题?如何调整的谁还有不同的调整策略?

问:你们觉得这种方法怎样样?(简便、快捷)

(3)请大幅度跳跃列表同学汇报

你是怎样想到把鸡或兔的只数调整的?

(4)请大或小幅度调整与逐一相结合的汇报

重点追问:计算验证后发现什麽,怎样想到用这种方法进行调整的?

小结:列表过程中根据需要我们能够有规律的小幅度跳跃,也能够根据自己的发现大幅度的跳跃;(板书跳跃)

(5)请选用取中列举法的同学汇报?

追问:你是怎样想到这种列表法的(说出理由)还有那些同学与他的方法相同或类似,你们认为这种方法有什么优势?

小结:取中列举法在逐一和跳跃的基础上直取中间数,验证后调整幅度缩小更为简便快捷(板书取中)

3.回顾与交流

回顾一下我们的解题思路和方法,首先根据已知信息进行尝试猜测,然后进行计算验证,分析后进行合理调整。(相机板书:猜测、验证、调整)

你最喜欢那种列表方法?理由呢?

同学们还有其他的方法解决这道题吗?

直观画图法:大家明白了吗?你觉得这种解法怎样样?

小结:画图的方法十分直观便于观察、十分容易理解。

同学们还有具有独特个性的解法吗?能够用自己的名字命名汇报。

【设计意图】在问题情境中探究解决问题的方法,给学生足够的空间经历数学知识的构成过程,体验猜测—验证—调整—再验证—再调整的过程,从而得到解决鸡兔同笼问题的一般方法策略:列表法。

过渡:你们在这么短的时间内就想出了这么多解决鸡兔同笼问题的方法,你们很了不起。

四、方法应用,巩固新知(5分)

过渡语:抓住数学的本质,那里的鸡不仅仅仅代表鸡,那里的兔也不仅仅仅代表兔,运用我们所学的方法来解决一些生活中的鸡兔同笼问题,请看题:迎奥运学校开展乒乓球比赛,有12个球案在进行单打和双打比赛,共有30人正在比赛,单打、双打球案各有几张?

独立完成后学生汇报:你采用的是那种列表方法为什么要选用这种列表方法?谁有不同的列表方法?就这道题而言你认为用哪种方法解决最好?

【设计意图】学数学用数学,引领学生抓住数学的本质,学习鸡兔同笼问题并非单纯解决鸡兔同笼问题而是借助鸡兔同笼问题学习列表法。

五、实践应用解决问题

地震后要用大小卡车往灾区运29吨食品,大卡车每辆每次运5吨,小卡车每辆每次运3吨,大小卡车各用几辆能一次运完?尝试运用你喜欢的方法独立完成此题。

学生汇报:你采用的是那种列表方法为什么要选用这种列表方法?谁有不同的列表方法?

1.(如分别出现两种不同的正确答案)两种答案都正确吗?那么用什么方法能使所有的正确答案都不遗漏呢?师生群众尝试逐一列表的方法。

就这道题而言,你认为它与鸡兔同笼问题有什么联系?不同之处呢?(没有限定大小卡车的总辆数)哪种方法解决最好?

2.(如出现一名同学有两个正确答案和分别一个正确答案)你认为谁的方法更好?

过渡语:老师相信同学们必须会耐心细致的做每一件事请。

【设计意图】此练习题的出示目的是使学生在发现问题,解决问题的学习过程中明确因题而异选取方法,认识到对于本题来讲选用逐一列表法最为适宜,进一步明确逐一列举法的优势好处。

六、生活拓展、谈谈收获(3分)

愿意告诉老师这节课你的学习收获吗?

结束语:数学自古以来是中国历史上的璀璨明珠,在我们的生活中无处不在,我相信同学们只要敢于猜测尝试、并且不断的实践验证、调整创新,任何问题都能迎刃而解。

篇9: 鸡兔同笼教学设计

教学目标:

1、了解鸡兔同笼问题,掌握用尝试法、假设法解决问题,初步形成解决此类问题的一般性策略。

2、通过自主探究、合作交流,让学生经历用不同的方法(列表举例、作图分析)解决“鸡兔同笼”问题的过程,明确数量关系。

教学重点:明确鸡兔同笼问题数量关系。

教学难点:初步形成解决此类问题的一般性。

教学过程

一、历史激趣,导入新课(3分)

导语:老师早就听说我们班的同学最喜欢看书,最善于思考,今天老师给同学们带来了一部一千五百年前的数学名著《孙子算经》(课件出示古书动画打开书出现原题),在这里记载着许多有趣的数学名题,其中有这样一道题请看:今有雉兔同笼,上有三十五头下有九十四足,问雉兔各几何?

这句话中,你们有不明白的词语吗?(电脑出示:题目中的“雉”(读成“zhì”),就是野鸡。)谁来说一说,这道题目是什么意思?谁能用现代文翻译一下:(这道题目是说,现在有一些野鸡和兔子,关在同一只笼子里,从上面看,共有35个头;从下面看,共有94只脚。问有多少只野鸡、多少只兔子。)

师:古代人对这样的题目有着自己独道的见解,我们把类似于这样的问题,统称为:“鸡兔同笼”。今天,我们就来研究中国历史上著名的数学趣题“鸡兔同笼问题”。(板书课题:鸡兔同笼)

2、我们先从简单一些的问题入手,来探讨解决这类问题的方法。

【设计意图:这一引入,给数学课堂带来了浓厚的文化气息,让我们的学生感受到我国数学文化的源远流长,激发了学生的学习热情。】

二、合作探究,构建新知(15分)

1、请同学们看一幅鸡兔同笼的情景图(课件出示)你能猜出这笼子里有几只鸡和几只兔吗?

请看题目,鸡兔同笼,有20个头,54条腿,鸡、兔各有多少只?你从中发现了哪些数学信息?这道题里还有隐藏的数学信息吗?

2、先猜一猜,可能只有一种动物吗,为什么?

学生猜测,汇报。不可能都是鸡,因为如果都是鸡就会有40条腿,而题目中是54条腿。也不可能都是兔,因为如果都是兔就会有80条腿。

3、独立思考:

(1)你想怎样解决这个问题?生举手,师:不着急说,先自己想一想!学生静想10秒。

鸡兔可能各有多少只?你想怎样解决这个问题呢?

找几名同学说一说解决的办法。

同学们可以借助表格清晰明了的呈现出你的解题方法,如果有其他解题方法,请写在答题纸上。

【设计意图:尊重教材;不束缚限制任何学生的思维,养成专注倾听的习惯拓宽学生思路,留给学生独立思考的空间,倡导用多种方法解决问题。】

4、学生独立完成,教师巡视。

5、学生汇报:

1)、(假如有采用逐一列表法的)请一个采用逐一列表法解决的同学汇报,汇报讲出理由(你是如何确定第一组数据的,验证后发现了什么问题,怎样进行调整的也就是调整的方法),并且说一说调整过程中有什么发现?(因为鸡和兔的只数是固定的,每增加一只兔子减少一只鸡,腿的总只数就增加2。)

还有哪些同学与他的方法相同或类似?补充说明理由和发现的规律。

篇10: 鸡兔同笼教学设计

一、教学目标

(一)知识与技能

了解“鸡兔同笼”问题的结构特点,渗透化繁为简的思想,掌握用列表法、假设法、方程法解决问题,初步构成解决此类问题的一般性策略。

(二)过程与方法

经历猜测的过程,尝试用列表、假设的方法解决“鸡兔同笼”问题,引导学生有序思考,使学生体会解题策略的多样性。

(三)情感态度和价值观

在解决问题的过程中,培养学生的迁移思维潜力,感受古代数学问题的趣味性。

二、教学重难点

教学重点:渗透化繁为简的思想,体会用假设法的逻辑性和一般性。

教学难点:理解用假设法解决“鸡兔同笼”问题的算理。

三、教学准备

课件、实物投影。

四、教学过程

(一)情境导入

教师:同学们,大约一千五百多年前,我国古代数学名著《孙子算经》中记载了一道数学趣题——“鸡兔同笼”问题。

(板书课题:鸡兔同笼)

出示主题图:今有雉兔同笼,上有三十五头,下有九十四足,问雉兔各几何?

教师:这道题是以文言文的方式表述的,雉就是野鸡,哪位同学看懂它的意思了?

学生:笼子里有若干只鸡和兔。从上面数,有35个头,从下面数,有94只脚。鸡和兔各有几只

教师:从题中获取信息,你明白了什么,要求什么问题?

(二)探究新知

1.尝试解决,交流想法。

既然“鸡兔同笼”问题能流传至今,就就应有它独特的思考方式和解题方法。

问题:同学们想一想,算一算鸡和兔各有多少只?

2.感受化繁为简的必要性。

大家在刚才猜了好几组数据,经过验证都不正确,为什么猜不对呢?

数据大了不好猜,我们就应怎样办?

我们把数字改小些,先从简单的问题入手。

(课件出示例1)“笼子里有若干只鸡和兔。从上面数,有8个头,从下面数,有26只脚。鸡和兔各有几只?”

教师:从题中你们能获取哪些信息?和生活常识联系在一齐,你还能说出哪些信息?

预设:

学生1:鸡和兔共8只,鸡和兔共有26只脚。

学生2:鸡有2只脚,兔有4只脚。

【设计意图】渗透化繁为简的思想,引导学生理解题意,找出隐藏条件,帮学生初步理解“鸡兔同笼”问题的结构特点。

3.猜想验证。

教师:有了这些信息,我们先来猜猜,笼子可能会有几只鸡?几只兔?猜测需要抓住哪个条件?

学生:鸡和兔一共有8只。

教师:是不是抓住这个条件就必须能立刻猜准确呢?好,老师那里有一张表格,请大家来填一填,看看谁能又快又准确地找出答案来,开始。

学生汇报。

小结:这个方法挺好,能帮我们解决鸡兔同笼的问题,我们把这种方法叫做列表法。(板书:列表法)

教师:老师刚才发现,很多同学都完成得十分快,很了不起!那么,同学们,你们觉得用列表法解决“鸡兔同笼”问题怎样样呢?

预设:

学生1:列表法能很清晰地解决这个问题。

学生2:因为数字比较简单,所以列表法还能够用,但是数字变大时,列表法就会比较麻烦,会浪费很多时间。

教师:说得十分好,那我们就来尝试研究一下更简洁的方法吧。同学们再来观察自己刚才列的表格,看看这些数量之间是否存在着一些数学规律,请将你的想法跟同组的同学相互交流一下。

学生小组交流汇报。

预设:

学生1:鸡的数量每减少1只,兔的数量就增加1只,脚的数量也跟着增加2只。

学生2:兔的数量每减少1只,鸡的'数量就增加1只,脚的数量反而减少2只。

【设计意图】列表法虽然烦琐,但这是一种重要的解决问题的策略和方法,是学习假设法的基础,因此也是本课的重要教学资料之一。让学生以填表的方式初步体验鸡兔同笼状况下随着鸡或兔只数的调整,脚的总数量的变化规律,为下面的学习做好铺垫。

4.数形结合理解假设法。

教师:同学们的想法十分好,我们一齐继续来看这张表格,透过分析表格来将同学们的想法表述得更加清晰。

(1)假设全是鸡。

教师:我们先看表格中左起的第一列,8和0是什么意思?

学生:就是有8只鸡和0只兔,也就是假设笼子里全是鸡。

教师:那笼子里是不是全是鸡呢?这也就是把什么当什么来算了?

学生:不是,我们是把一只4只脚的兔当成一只2只脚的鸡来算的。

教师:这样算会有什么结果呢?

学生:每少算一只兔就会少算2只脚。

教师:假设全是鸡,一共是16只脚。实际有26只脚,这样笼子里就少了10只脚,这说明什么呢?

学生:每只鸡比兔少2只脚,少了10只脚说明笼子里有5只兔。

教师:你们能列出算式吗?

学生尝试列算式。

教师以画图法进行演示:

8×2=16(只)。(如果把兔全当成鸡,一共就有8×2=16只脚。)

26-16=10(只)。(把兔看成鸡来算,4只脚的兔当成2只脚的鸡算,每只兔就少算了2只脚,10只脚是少算的兔的脚数。)

4-2=2(只)。(假设全是鸡,就是把4只脚的兔当成2只脚的鸡。所以4-2表示一只兔当成一只鸡,就要少算2只脚。)

10÷2=5(只)兔。(那把多少只兔当成鸡算,就会少10只脚呢?就看10里面有几个2,也就是把几只兔当成了鸡来算,所以10÷2=5就是兔的只数。)

8-5=3(只)鸡。(用鸡兔的总只数减去兔的只数就是鸡的只数,8-5=3只鸡。)

(2)假设全是兔。

教师:我们再回到表格中,看看右起第一列中的0和8是什么意思?

学生:就是有0只鸡和8只兔,也就是假设笼子里全是兔。

教师:笼子里是不是全是兔呢?这个时候是把什么当什么算的?

学生:把里面的鸡当成兔来计算的。

教师:那把一只2只脚的鸡当成一只4只脚的兔来算,会有什么结果呢?

学生:就会多算2只脚。

教师:请同学们像老师那样画一画,算一算。

学生汇报:

8×4=32(只)。(如果把鸡全看成兔,一共就有8×4=32只脚。)

32-26=6(只)。(把鸡当成兔来算,2只脚的鸡当成4只脚的兔算,每只鸡就多了2只脚,6只脚是多算了鸡的脚数。)

4-2=2(只)。(假设全是兔,就是把2只脚的鸡当成4只脚的兔。所以4-2表示一只鸡当成一只兔,多算了2只脚。)

6÷2=3(只)鸡。(那要把多少只鸡当成兔来算,就会多算6只脚呢?就看6里面有几个2,也就是把几只鸡当成了兔来算,所以6÷2=3就是此刻鸡的只数了。)

8-3=5(只)兔。(用鸡兔的总只数减去鸡的只数就是兔的只数,8-3=5只兔。)

(3)提出假设法概念。

刚才我们透过假设都是鸡或都是兔来解决例1的,所以把这种方法叫做假设法。这是解决“鸡兔同笼”问题的一种基本方法,也是算术方法中较为普遍的一般方法。

(板书:假设法)

【设计意图】此环节是本课的重点,也是本课的难点,假设法的算理对于大部分学生来说,都是比较难以理解和掌握的。采用画图法,数形结合地引导学生根据图较为完整、准确地说明算理,学会思考,学会解释,能够让学生更加直观地感受假设法的优越性。

(三)知识运用

学生独立完成古代趣题。

【设计意图】运用已学的技能去解决古代“鸡兔同笼”问题,创设课堂教学文化氛围,提高学生探究数学的热情。

(四)全课小结

这节课我们一齐用列表法和假设法研究了古代著名的“鸡兔同笼”问题。你学会了吗?

篇11:鸡兔同笼教学反思

“鸡兔同笼 ”是六年级上册数学广角的内容。在这节课当中,我主要借助教材上的列表法同时结合引导学生画图的方法,再配合假设法。充分运用了动手操作这个手段,让学生弄懂鸡兔同笼问题的基本解题思路。本节课的重点放在了“尝试探究”这一部分,使学生充分感受数学的思维过程,培养学生的逻辑推理能力。通过画图的过程中充分调动了学生的积极性,经历了一个探索的过程,这时候再介绍假设法就水到渠成了。也实现了运用多种方法解决问题的目的。起到了意想不到的效果。应用练习是一个提升的过程,让学生回顾研究鸡兔同笼问题的解决方法的过程,选择合适的方法来解决新的问题,在汇报时让学生说说理由。用哪种方法合适?为什么?应用练习的设计,这样都能使学生巩固了解决鸡兔同笼问题的方法,同时解决问题的能力也得以进一步的提升。课堂教学后,我进行了以下反思:

1.通过向学生提供了现实、有趣、富有挑战的学习素材,借助我国古代趣题“鸡兔同笼”问题,使学生展开讨论,从多角度思考,运用多种方法解题,学生可以应用作图法、列表法、假设法、列方程解决问题。(1)师生共同经历了三种不同的列表方法:逐一列表法、跳跃式列表法、取中列表法。(2)假设法教学与画图结合分析的方法上的突破,达到好的效果。(3)列方程解决问题做为后进生的学习良方,也是解决难题的途径,也值得老师重点关注与突破。

2.遵照《新课程标准》的精神,在课程设置中强调学生是学习的主人,在学习过程中尽可能多的为学生提供探索和交流的空间,鼓励学生自主探索与合作交流。通过教师创设的现实情景,让学生投入解决问题的实践活动中去,自己去研究、探索、经历数学学习的全过程,从而体会到假设的数学思想的应用与解决数学问题的关系。通过学习使学生认识到数形结合的重要性,提高学生分析问题和解决问题的能力。图形与鸡兔同笼的有效结合,让知识“二合为一”,有效沟通对知识的迁移,以及培养孩子“举一反三”的能力有重要的意义。

3.在学习中注意独立思考与小组合作相结合,鼓励每个学生参与学习过程,不同学生根据自己的经验,逐步探索不同的方法,找到解决问题的策略,在学生独立思考2-3分钟后再强调学生之间交流,在合作交流学习的过程中,积累解决问题的经验,掌握解决问题的方法,使学生共同学习,共同进步,共同提高,提高合作学习的有效性。

总的来说,教学有效性更注重把所学的数学知识应用到生活中去,用数学的眼光看待身边的事物,体会数学的价值。这堂课研究的方法多,容量大,有的地方只是蜻蜓点水,部分学生理解上还有点问题,我想将在练习课中进一步完善。一句话:尊重学生的思维水平。

篇12:鸡兔同笼教学设计

教学目标:

1.了解鸡兔同笼问题,掌握用列表法、假设法的方法解决鸡兔同笼问题的解题思路。并能用不同的方法解决与鸡兔同笼有关的问题。

2.让学生在自主探索、尝试、合作学习的过程中,经历用不同方法解决鸡兔同笼问题的过程,使学生体会用方程解鸡兔同笼问题的一般性。

3.了解我国古人解鸡兔同笼问题的方法,感受其趣味性。

教学重点:尝试用不同的方法解决鸡兔同笼问题,在尝试中培养学生的思维能力。

教学难点:在解决问题的过程中,培养学生的逻辑思维能力。

教法:分析、引导

学法:自主探究

课前准备:多媒体。

教学过程:

一、定向导学:2分钟

1、师:同学们,你们知道吗,大约在15前,我国古代的数学名著《孙子算经》中,记载着一道有趣的数学题:(课件出示,题略)你们知道这道题的意思吗?

生:……(课件演示)

师:这就是有趣的“鸡兔同笼”问题。(板书课题)今天我们就一起研究这一问题。

2、学习目标:

掌握用列表法、假设法或列方程的方法解决鸡兔同笼问题的解题思路。并能用不同的方法解决与鸡兔同笼有关的问题。

二、自主探究:8分钟

内容:课本p104例1的(1)

时间:5分钟

方法:边看书边完成下面要求:

1、“鸡兔同笼”这四个字是什么意思?

2、书上用了( )种方法来解决这个问题。

3、我们一起来看看被关在同一个笼子里的鸡和兔给我们带来了哪些信息?

生理解:(1)鸡和兔共8只;(2)鸡和兔共有26只脚;(3)鸡有2只脚;(4)兔有4只脚;(5)兔比鸡多2只脚。(课件演示)

师:那问题是什么?

生:鸡和兔各有多少只?

3、猜一猜:

师:请同学们猜一猜鸡和兔可能各有多少只?(学生猜测)还有其它的猜测吗?

4、介绍列表法:

师:你们猜出的结果鸡和兔的总只数都是8只,但是你们猜想的结果都正确吗?到底哪个是正确的呢?下面请同学们把你们的猜想整理到这张表格中,并进行调整,看看哪个结果才是共有26只脚。(学生活动)

学生汇报整理后的表格,教师板书学生整理后的表格。(边板书,边理解填表过程)

5、观察发现,列式计算

三、合作交流:5分钟

假设全是兔,怎样解决?试一试。

四、质疑探究:5分钟

解决鸡兔同笼这类问题,有几种假设的方法?

五、小结检测:20分钟

1、小结方法:

同学们真了不起,刚才我们在解决鸡兔同笼的问题时,用到了多种方法:列表法,假设法。

2、检测:

a、问答:

(1)如果老师让你们解决《孙子算经》中的原题,你会选哪种方法解决呢?

为什么不选择列表法?难?为什么难?(要列举的情况很多)有没有好的办法?(有没有不用列举那么多就能找到答案呢)

(2)、如果一定要你用列表法解答你有什么办法?学生讨论。(教师引导列表折半调整。)

(注:如果前面出现了折半列表,就把这个环节提前讲。)

(3)、其实在我们生活当中类似于鸡兔同笼的问题有很多的,这些问题都可以用不同的方法去解决,下面请同学们用自己喜欢的方法做一些题目?

b、解决问题

(1)、有龟和鹤共40只,龟的腿和鹤的腿共112条,龟和鹤各有多少只?

(2)全班一共有38人,共租了8条船,每条大船乘6人,每条小船乘4人,每条船都坐满了。问大船和小船各多少条?

(3)、新星小学”环保卫士”小分队12人参加植树活动.男同学每人栽了3棵树,女同学每人栽了2棵树,一共栽了32棵树.男女同学各几人?

作业:p 106.1、2、3。

板书:

鸡兔同笼

假设全是鸡,就有脚8×2=16(只)

比实际少26-16=10(只)

一只鸡比一只兔少4-2=2(只)

兔子:10÷2=5(只)

鸡:8-5=3(只)

1.《鸡兔同笼》教学设计

2.小学课文鸡兔同笼教学设计

3.关于鸡兔同笼的教学设计

4.四年级下册鸡兔同笼教学设计

5.《雪》教学设计

6.《秋思》教学设计

7.《燕子》教学设计

8.白杨教学设计

9.iuv教学设计

10.《看海》教学设计

篇13:《鸡兔同笼》教学设计

教学内容:

义务教育课程标准实验教科书《小学数学》六年级上册

教学目标:

1、通过学生对一些日常生活中的现象的观察与思考,从中发现一些特殊的规律。

2、通过猜测、列表、假设或方程解等方法,解决鸡兔同笼的问题。

3、通过本节课的学习,知道与鸡兔同笼有关的数学史,对学生进行数学文化的熏陶和感染。

教学重难点:假设法思想的渗透,并让学生选择合适的方法解决问题。

教学方法:引导,学生小组合作

教学准备:课件一套,练习纸

教学过程:

情境引入,旧知铺垫,引出课题1、(播放课件,画面中有2只兔子,3只鸡)

2、让学生观察课件的封面,数一数上面有多少只鸡和兔,那它们一共有多少条腿?请你动动脑筋,你能想出多少种不同的方法?(学生小组讨论后集体汇报)

老师板书:

第一种:4×2+3×2=14(条)

第二种:4×5-2×3=14(条)

第三种:2×5+2×2=14(条)

第四种:2×7=14(条)

(学生若没说出第四种也可,关键引导学生说出第2种和第3种列式,让学生说出这样列式的算理。)

3、小结第2种和第3种列式的算法,强调其中的数学思想――假设

4、师:如果现在既不知道有多少只鸡,也不知有多少只兔,只知道鸡和兔关在了一起,告诉你有几个头,几条腿,让你求出鸡和兔分别有多少只?这样的题你遇到过吗?

(板书课题:鸡兔同笼)

二.自主探究,解决问题。

1.出示例题

师:这样有意思的题目大约在1500年前,我国古代数学家就研究了这样的问题,有同学知道吗?

生:鸡兔同笼问题。

师:就是著名的“鸡兔同笼”问题。可能有些同学在外面上奥数类的课已经学过了,如果你会你可以在小组中给其它同学提供一些帮助好吗?我相信其它同学经过自己的努力也能学好这个比较难的但又非常有意思的知识。有信心吗?

生:有。

师:从你们响亮的回答中,我感受到了大家十足的信心,那就让我们一起走进今天的课堂。

2.(课件出示例题)

笼子里有若干只鸡和兔,从上面数,有8个头,从下面数,有26条腿,鸡和兔各有多少只?

师:8个头说明了什么?

生:鸡和兔一共是8只。

师:那请你们猜猜,可能有几只鸡,几只兔呢?

(播放课件,出示“猜一猜”界面,根据学生的猜测,输入鸡和兔只数,提交答案。)并板书

师:数学上的猜测也是有一定方法的,不是胡乱地猜。有谁能够在刚才同学猜测的基础上进行调整,来更快的找到正确结果呢?

生:……(通过已经猜过的答案2个2个地调整或3个3个地调整)

师:把一只鸡换成兔腿总数会有什么变化?把一只兔变成鸡呢?

师:刚才我们通过猜一猜,列表分析数据,根据变化规律进行调整,找到了准确结果。你们会了吗?

师:想一想,如果笼子里有更多的鸡和兔。我们还用猜测法,列表法来找会怎么样?

生:比较麻烦。

师:我们还有没有其它更简单些的方法呢?答案是肯定的。

学生小组合作,探讨解决问题,老师巡视。收集学生的个例,让学生汇报,同时老师配以课件演示。(学生可能用画图的形式来解决问题,可出示图示法,若学生直接说出假设法的列式,让学生说出每一步列式的意义,教师同时板书出列式,并利用课件图示法的内容进行说明;学生讲到了方程,出示方程。)

篇14:鸡兔同笼教学设计

关于鸡兔同笼教学设计

一、教学内容:

北师版五年级数学上册80——81页。

二、教材分析:

设计意图:本教材向学生提供了现实、有趣、富有挑战的学习素材,借助我国古代趣题“鸡兔同笼”问题,使学生展开讨论,应用假设的数学思想,从多角度思考,运用多种方法解题,学生可以应用列表法(逐一列表法、跳跃式列表法、取中列表法)。学生根据自己的经验,逐步探索不同的方法,找到解决问题的策略,在合作交流学习的过程中,积累解决问题的经验,掌握解决问题的方法。

三、教学目标:

1 、培养学生的合作意识,在现实情景中,使学生感受到数学思想的运用与解决实际问题的`联系,提高学生解决问题的能力和自信心,进而让学生体会数学的价值。

2、应用假设的数学思想,在解题中数形结合,提高学生分析问题和解决问题的能力。

3、在解决“鸡兔同笼”的活动中,通过列表举例、画图分析、尝试计算等方法解决鸡兔的数量问题。

四、教学设计:

(一)创设情境。

1、出示课题,引出问题:今天我们共同研究鸡兔同笼问题。(板书:)

问:鸡兔同笼是什么意思?

出示图。师问:请你猜一猜图中有几只兔子几只鸡?

(二)探求新知。

1. 独立学习。

师:如果告诉你:鸡兔同笼,有20个头,54条脚,鸡、兔各多少?能求出几只兔子,几只鸡吗?(出示题目)

师:你打算用什么方法解决这个问题?请同学们思考一下,想好了,写出。

2. 小组交流: 请同学们把自己的想法在小组内交流一下,看哪个小组方法又快又好。

3. 集体讨论并汇报

师:哪个小组说说你们的想法?

小组1:我们采用列表法得出的答案。先假设有1只鸡,19只兔子,脚就有78条。脚太多,然后又假设有2只鸡,18只兔子,脚还是太多了。这样试下去就得到了有13只鸡,7只兔子。

师小结:采用“逐一列表法”,还有哪些小组采用不同的列表法?

小组2:我们也采用列表法得出的答案,我们发现鸡增加1只,兔子减少1只,腿就减少2条,所以我们没有一个一个的试,那样太麻烦,而是从2只鸡,18只兔直接跳到10只鸡,10只兔。最后也得到了13只鸡,7只兔。

师小结:这是“跳跃式列表法”。

小组3:我们小组也是列表法。我们是先假设鸡有10只,兔子也有10只。这样比较简便。

师小结:这是“取中列表法”

(三)解决问题:

1. 将题目改成:鸡兔同笼,有17个头,42条腿,鸡、兔各几只?请你列表的方法解决。(练一练1)

2.老师带51名学生到公园划船。一条大船坐6人,一条小船坐4人,他们租了大船、小船各几条?请同学们用列表方法解决。

(四)学习总结。

通过今天的学习,你有哪些收获?

篇15:鸡兔同笼教学设计

教学目标:

1、了解鸡兔同笼问题,掌握用尝试法、假设法解决问题,初步形成解决此类问题的一般性策略。

2、通过自主探究、合作交流,让学生经历用不同的方法(列表举例、作图分析)解决“鸡兔同笼”问题的过程,明确数量关系。

教学重点:

明确鸡兔同笼问题数量关系。

教学难点:

初步形成解决此类问题的一般性。

教学过程

一、历史激趣,导入新课(3分)

导语:老师早就听说我们班的同学最喜欢看书,最善于思考,今天老师给同学们带来了一部一千五百年前的数学名著《孙子算经》(课件出示古书动画打开书出现原题),在这里记载着许多有趣的数学名题,其中有这样一道题请看:今有雉兔同笼,上有三十五头下有九十四足,问雉兔各几何?

这句话中,你们有不明白的词语吗?(电脑出示:题目中的“雉”(读成“zhì”),就是野鸡。)谁来说一说,这道题目是什么意思?谁能用现代文翻译一下:(这道题目是说,现在有一些野鸡和兔子,关在同一只笼子里,从上面看,共有35个头;从下面看,共有94只脚。问有多少只野鸡、多少只兔子。)

师:古代人对这样的题目有着自己独道的见解,我们把类似于这样的问题,统称为:“鸡兔同笼”。今天,我们就来研究中国历史上著名的数学趣题“鸡兔同笼问题”。(板书课题:鸡兔同笼)

2、我们先从简单一些的问题入手,来探讨解决这类问题的方法。

【设计意图:这一引入,给数学课堂带来了浓厚的文化气息,让我们的学生感受到我国数学文化的源远流长,激发了学生的学习热情。】

二、合作探究,构建新知(15分)

1、请同学们看一幅鸡兔同笼的情景图(课件出示)你能猜出这笼子里有几只鸡和几只兔吗?

请看题目,鸡兔同笼,有20个头,54条腿,鸡、兔各有多少只?你从中发现了哪些数学信息?这道题里还有隐藏的数学信息吗?

2、先猜一猜,可能只有一种动物吗,为什么?

学生猜测,汇报。不可能都是鸡,因为如果都是鸡就会有40条腿,而题目中是54条腿。也不可能都是兔,因为如果都是兔就会有80条腿。

3、独立思考:

(1)你想怎样解决这个问题?生举手,师:不着急说,先自己想一想!学生静想10秒。

鸡兔可能各有多少只?你想怎样解决这个问题呢?

找几名同学说一说解决的办法。

同学们可以借助表格清晰明了的呈现出你的解题方法,如果有其他解题方法,请写在答题纸上。

【设计意图:尊重教材;不束缚限制任何学生的思维,养成专注倾听的习惯拓宽学生思路,留给学生独立思考的空间,倡导用多种方法解决问题。】

4、学生独立完成,教师巡视。

篇16:鸡兔同笼教学设计

鸡兔同笼教学设计

鸡兔同笼教学设计

中心小学吕桂娟

学情分析:

鸡兔同笼问题是我国民间流传下来的一类数学妙题,它集题型的趣味性、解法的多样性、应用的广泛性于一体,具有训练智能的教育功能和价值,是实施开放式教学的好题材。

教材呈现三种解题思路:列表尝试法、假设法和方程法。列表尝试法能直观反映数据的变化,学生容易接受,但数据较大时比较繁琐不宜采用;假设法是一种算术方法,计算比较简便,但理解算理有一定难度;方程法容易建立数量关系,有利于培养学生的分析能力,但求解过程对多数小学生而言较难。因此,本课设计的重点放在理解假设法的算理上。列表尝试法虽然有局限性,但它是假设法和方程法的基础,因此在引导学生用列表尝试法解决问题时,就要有意识地作好铺垫,为下面的教学埋下伏笔。在掌握解决问题的方法后,引导学生反思提升,通过鸡兔同笼问题与生活中类似问题的比较,帮助学生建立“鸡兔同笼”结构特点和解决模型。

课前,我对我班学生进行调查,发现一小部分学生接触过“鸡兔同笼”问题,但多数学生对独立学习“鸡兔同笼”问题存在一定的难度。所以在这节课中,我主要采用教师适时引导和学生小组合作探究相结合的教学方式,让学生在尝试,探索,交流合作中弄懂“鸡兔同笼”问题的基本结构特征,经历用不同的方法解决“鸡兔同笼”问题的过程,初步形成解决此类问题的一般性策略。

教学目标:

1.使学生了解“鸡兔同笼”问题的结构特点,掌握用列表法、假设法、方程法解决问题,初步形成解决此类问题的一般性策略。

2、通过自主探索,合作交流,让学生经历用不同的方法解决“鸡兔同笼”问题的过程,使学生体会解题策略的多样性。渗透化繁为简的思想。

3、使学生感受古代数学问题的'趣味性,体会到“鸡兔同笼”问题在生活中的广泛应用,提高学习数学的兴趣。

教学重点:尝试用不同的方法解决“鸡兔同笼”问题,体会用假设法和方程法解决问题的优越性。

教学难点:理解用假设法解决“鸡兔同笼”问题的算理。

教学过程:

(一)创设情境,生成问题

课前谈话

揭示课题

介绍《孙子算经》中的原题。

原题解读

(二)探究交流,解决问题

1、出示例1:笼子里有若干只鸡和兔。从上面数,有8个头,从下面数有26只脚。鸡和兔各有几只?

2、从题中你知道了什么,要求什么问题?

3、探究解题方法

(1)引导用列表法解决问题

①猜一猜笼子里可能有几只鸡,几只兔?

②师:他猜得对吗?该如何判断正误?该怎样调整鸡和兔的只数?为什么?

③请拿出答题卡一,先猜测,后验证,如果答案不对,想一想怎么调整能更快找到答案。最后数一数你试了几次?再想一想有没有更便捷的调整策略。

④反馈交流。

A、按顺序列表。

试了几次?从表中你发现了什么规律?

B、取中或跳跃列表。

⑤小结

(2)小组合作交流,用假设法和方程法解决问题

①同桌讨论,尝试独立列式解答。

②集体反馈。

A.反馈假设法一。课件直观演示。

B.反馈假设法二。

C.比较这两种解题思路,它们有什么相似之处?

师:假设都是鸡,为什么先求的是兔?假设都是兔呢?

D.反馈方程解。

4、小结

(三)巩固应用,内化提高

1、解决书中的原题。

2、生活中“鸡兔同笼”的问题。

(1)动物园中的问题

动物园有龟和鹤共40只,龟的腿和鹤的腿共有112条。龟、鹤各有几只?

(2)游乐园中的问题

有38个同学去游乐园划船,共租了8条船,每条船都坐满了。大船每条乘6人,小船每条乘4人。大小船各租了几条?

选一道自己感兴趣的问题解决。

集体反馈。

3、引导学生建立“鸡兔同笼”问题的数学模型。

4、揭晓课前猜测的答案。

(四)巩固应用,内化提高

1、阅读并思考:课本114页的“阅读资料”

2、完成练习二十六的1-3题。

鸡兔同笼教学反思

鸡兔同笼练习题

数学教学随笔

小学教师教学随笔短篇

人教版烙饼问题教学设计

《沏茶问题》数学教学反思

教育教学随笔语文

教学随笔的写法

小学语文教学随笔

狼和鹿教学随笔

鸡兔同笼问题教学随笔
《鸡兔同笼问题教学随笔.doc》
将本文的Word文档下载到电脑,方便收藏和打印
推荐度:
点击下载文档

【鸡兔同笼问题教学随笔(整理16篇)】相关文章:

小学科学教学随笔2022-05-06

教育教学叙事随笔2022-05-06

六年级数学教学随笔博客2022-04-29

教育教学感悟随笔演讲稿2022-04-29

关于《爱的教育》教学随笔2022-04-30

创意美术教学活动随笔2022-05-05

小学语文教育教学随笔精选2022-05-06

《珍贵的纪念》的教学随笔2022-05-06

反映问题范文2022-05-06

面试问题之二2022-05-06